GPH 505 Geophysical Data Processing*(3+0+0)3

Basic signals, sampling, Z transforms, Fourier analysis.

Least squares fitting, covariance and correlation functions.

Power spectra. Probability. Normal, Binomial and Poisson distributions.

Deconvolution, optimum filters, linear filters in earth sciences.

Special filters in geophysics: polarization analysis, f-k filtering.Matrıx algebra.

GPH 507 Introduction to Seismology**(3+0+0)3

Study of seismology, the science of earthquakes and its historical

development. Seismic waves: Body waves, surface waves. Travel

times and structure of the earth. Seismogram interpretation. Seismographs.

Anelasticity and anisotropy. Focal parameters of earthquakes: Earthquakes

and faults, location, magnitude, seismic moment, intensity, seismic energy.

Seismicity, seismotectonics, seismic hazard and seismic risk.

GPH 509 Introduction to Geophysical Methods
(3+0+0) Non-credit

A detailed study of the theory and application of geophysical methods

for mining, petroleum exploration and engineering studies. Emphasis

on recent advances is seismic, gravity, electrical and magnetic

techniques. Laboratory work to solve exploration problems in magnetic,

electrical and seismic methods.

GPH 520 Plate Tectonics and Crustal Dynamics
(3+0+0)3

The interior of the earth. Characteristics of the earth’s crust.

Principal tectonic features of the earth. Oceanic crust and spreading

centers. Plate motion; driving forces. Convergent margins; subductions,

back-arc basins. Oceanic transform faults. Triple junctions and
supercontinents.

Collision, development of orogenic belts, formation of mountain roots,

ophiolite emplacement, sutures, delamination. Case studies: Himalaya,

Alps, Ural, Ands, Red Sea, Eastern Mediterranean, Anatolia, Aegean.

GPH 521 Earthquake Geology
(3+0+0)3

Brittle fracture of rock. Rock friction. Mechanics of faulting and

earthquakes. Seismotectonics. Geology of earthquake source region.

Active fault morphology, tectonic geodesy, seismic cycle, earthquake
prediction.

GPH 525 Computers in Geosciences
(1+0+0)1

C and Fortran programming. Application of numerical methods
,

to
computer simulations of geophysical methods. Development of

individual projects, writing appropriate computer codes. Introduction to

efficient use of Matlab as a tool for research in Earth Sciences.

GPH 528 The Physics of Earth’s Interior
(3+0+0)3

Chemical and physical models of the earth. Studying structure of

the Earth’s crust by using explosion and earthquake seismology,

gravity, magnetic and electromagnetic methods. Case studies from

Turkey and the world.

GPH 530 Electromagnetic Methods in Geophysics
(3+0+0)3

Study of electromagnetic sounding methods. Principles of magnetotellurics

(MT), controlled source audio-frequency magnetotellurics (CSAMT),

geomagnetic deep sounding (GDS) and very-low-frequency (VLF)

methods. Field applications and interpretation of electromagnetic data.

GPH 531 Fields in Geophysics
(3+0+0)3

Introduction to the classical field theory of geophysical interest, namely

steady state and time dependent electromagnetic fields, currents.

Lagrangian field theory. Gravitational and magnetic fields.

GPH 532 Geomagnetism and Paleomagnetism
(3+0+0)3

Historical development of geomagnetism. Global geomagnetic

studies, observation techniques, instrumentation and geomagnetic

observatories. Introduction to paleomagnetism.

GPH 540 Wave Propagation I
(3+0+0)3

Stress and strain, equation of motion, wave equation, One

dimensional solution of wave equation, body waves and ray theory,

Snell’s Law, travel times and the structure of the Earth.

GPH 542 Physics of Earthquake Sources I
(3+0+0)3

Point sources. Near field, far field radiation. Equivalent body

forces. Double couple sources. Elastostatic. Elastodynamic. Seismic

moment tensor. Radiation pattern. Fault plane solutions. Finite sources.

Rupture models. Haskell source. Source directivity. Source spectrum.

Fault geometry and corner frequency. Stress drop, rupture velocity.

Magnitude. Energy.

GPH 543 Observational Seismology
(3+0+0)3

Historical and conceptual background of observational seismology,

consequences of recent technical developments, seismicity, seismic

sources and source parameters, rules and procedures for magnitude

determination and magnitude scales, seismic waves and travel times,

seismic signals and noise, seismic data formats, data analysis

and seismogram interpretation, seismic analysis codes (SAC, Seatools,

geotools), locating earthquakes.

GPH 544 Seismic Instrumentation
(3+0+0)3

Overview, basic theory and history of seismometry. The frequency

response function, the transfer function, the impulse response function,

the condition for stability, the step response function, pole and zero

positions. Seismometry, seismic sensors and their calibration, seismic

recording systems. Seismic networks: Site selection, preparation and

installation of seismic stations, seismic network purpose, seismic network

configuration, data transmission and data acquisition. Seismic arrays.

GPH 547 Seismic Interpretation
(3+0+0)3

Theory of seismic refraction and reflection, data processing, velocity

analysis, filtering, migration, synthetic seismograms, two and three-

dimensional interpretation, computer applications and examples.

GPH 560 Environmental and Applied Geophysics
(1+0+0)1

Principles and applications of geophysical methods, seismic refraction

and reflection, gravity, magnetism, electromagnetism, resistivity and

ground penetrating radar. Hands on field exercises and demos at

some selected sites. Familiarization with report writing and application of

each method. Site studies related to environmental, engineering and

archaeological problems.

GPH 579 Graduate Seminar*
(0+1+0)Non-credit

The widening of students’ perspectives and awareness of topics of

interest to geophysicists through seminars offered by faculty, guest

speakers and graduate students.

GPH 591-594 Selected Topics in Geophysics I-IV
(3+0+0)3

Topics related to the research works in geophysics. Practical

aspects of explosion and earthquake seismology. Use of software for

analyzing collected geophysical data and preparing scientific reports.

GPH 595-596 Independent Studies I-II
(1+0+0)1

Independent research projects or directed readings designed to meet

the needs and interests of individual students. Regular conferences

given by students and instructors required.

GPH 598 M.Sc. Seminar
(1+0+0)1

Investigation in depth of a special topic related with the student’s

major area of study and research in geophysics, with the aim of

original contribution to the subject. Preparation and defence of a M.S.
thesis.

GPH 690 M.Sc. Thesis

Investigation in depth of a special topic related with the student’s

major area of study and research in geophysics, with the aim of original

contribution to the subject. Preparation and defence of a M.S. thesis.

GPH 601-602 Ph.D. Seminar I-II
(1+0+0)1

Material collection and presentation of a particular subject of interest

to the student. Improvement of the students’ ability in self-initiated

learning, systematizing collected materials for utilization, not

only for oral presentation but also for information retrieval and responding

to questions.

GPH 630 Magnetotelluric Method (MT)
(3+0+0)3

Theoretical basis of magnetotelluric (MT) method. Apparent resistivity

and phase relationships in MT. Field experiments. Data processing and

modeling of MT data.

GPH 631 Advanced Geomagnetism
(3+0+0)3

Spherical harmonic analysis. External, crustal and internal geomagnetic

fields, representation of the internal field, secular variation, dipole and

non-dipole fields, westward drift. Introduction to dynamo theory.

GPH 633 Numerical Methods in Electromagnetics
(3+0+0)3

Finite element method (FEM) in electromagnetism. Ritz and Galerkin

methods. One, two and three dimensional finite element analyses, boundary

value problems.

GPH 640 Array Seismology
(3+0+0)3

The term “Seismic array”, geometrical parameters, beam forming and

detection processing, array transfer function, slowness estimation using

seismic arrays, array design.

GPH 641 Physics of Earthquake Source II
(3+0+0)3

Moment tensor representation. Body wave modeling.

Surface wave modeling. Rectangular and circular fault models.

Rupture dynamics. Friction: Byerlee's Law, Coulomb failure, slip-weakening,

rate- and state-dependent friction. Nucleation, propogation and arrest of a

rupture. Crack growth model. Spatio-temporal seismicity patterns.

Characterization of fault zone structures, trapped waves.

GPH 642 Global Seismology
(3+0+0)3

Global distribution of seismic sources. Large scale structure of

the Earth. Crustal and upper mantle propagation. Mantle and

core phases. Receiver function. Global tomography. S-wave splitting

and upper mantle anisotropy. Free oscillations of the Earth. Surface

waves on spherical earth. Normal modes. Centroid moment tensor.

GPH 644 Inversion Methods in Geophysics
(3+0+0)3

Inverse of matrices, eigenvalues and eigenvectors, singular value

decomposition, linear inverse problems, least squares solution of

the linear inverse problems, solving underdetermined and overdetermined

problems with constraints, generalized inverses, monte carlo methods,

genetic algorithms.

GPH 645 Numerical Methods in Seismology
(3+0+0)3

Developing computer algorithms for a variety of seismological problems.

Finite-difference and finite element methods for the solution of wave
equation.

Numerical solution of Lamp’s problem. Ray tracing techniques. Solution

of integral equations. Propagator matrices. Time-frequency analysis of
seismıc signals.

GPH 647 Wave Propagation II
(3+0+0)3

Equation of motion, elastic wave equation, reflection-transmission

coefficients, surface waves, Lamb’s problem, wave propagation in

layered media, numerical solutions of wave equation.

GPH 671 Statistical Methods in Geo-Hazard Assessment
(3+0+0)3

Basic concept of probability and random processes in geophysics.

Gaussian distribution. Exponential distribution. Stationarity. Wiener
process.

Poisson process. Extreme value statistics Gumbel's distribution. Markov

sequences. Frequency-magnitude relationship. Time dependent hazard

models. Estimation: linear-mean square estimation, Bayes estimation,

maximum likelihood estimation. Methodologies for studying seismic

hazard. Case studies in Eastern Mediterranean region.

GPH 673 Advanced Exploration Geophysics
(3+0+0)3

Advanced treatments of recent topics of interest in exploration geophysics,

with emphasis on refraction and reflection prospecting. Principles of

refraction and refraction seismology. Experience in computer processing of

seismic data.

GPH 691-694 Special Topics in Geophysics I-IV
(3+0+0)3

Recent developments in geophysics are main contents of this lecture.

Contents of this lecture vary each year.

GPH 790 Ph.D. Thesis

Original research on the theoretical and/or applicational aspects of a

special topic related with the student’s major area of specialization in

geophysics. Preparation and defence of Ph.D. dissertation.

* Obligatory courses.

** Can not be taken for credits by the Department of Geophysics students.