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S U M M A R Y
Slip-rate function and the rupture velocity are two important parameters that are critical in
understanding the physics of earthquakes. When conventional objective functions are used, the
slip-rate function is not well resolved from seismic data. Here, we propose a new method to
obtain the slip-rate function by utilizing the near-field phases recorded near the fault rupture.
First we illustrate the sensitivity of near-field phases to the moment accumulation and modify
the objective function in order to take advantage of this sensitivity. By utilizing near-field
P waves along with S pulses on the near-source records and using a Bayesian approach,
we show that we can constrain the average slip-rate function as well as the average rupture
velocity for a strike-slip earthquake. As a case example, we apply this technique to the record
of the 2003, Mw6.6 Bam Earthquake. Our results indicate an asymmetric slip-rate function,
with acceleration duration of about 0.4 s, and deceleration duration of 1.4 s. The slip-rate
function obtained from kinematic modelling of the 2003 Bam earthquake is consistent with
those predicted by dynamic rupture simulations. The rupture velocity is about 82–90 per cent
of the shear wave velocity, implying a sub-Rayleigh rupture velocity close to the Rayleigh
wave speed. In future cases where abundant near-source strong-motion data exist and slip is
well constrained, the method described in this study can be applied to obtain the variation of
the slip-rate function along the fault which would improve our understanding of earthquake
rupture physics.

Key words: Earthquake dynamics; Earthquake ground motions; Earthquake source
observations.

1 I N T RO D U C T I O N

Slip-rate function (also called source–time function, slip-time func-
tion, rise time function or slip-function), determines how a point
on the fault slips in time. The shape of the slip-rate function used
for fitting the waveforms, significantly affects the estimation of dy-
namic parameters such as dynamic stress drop, strength excess and
critical slip weakening distance (Piatanesi et al. 2004).

Whether it is a crack (Kostrov 1964) or a pulse (Nielsen &
Madariaga 2003), dynamic rupture models predict rapid acceler-
ation (here referred to as rise) followed by a longer duration decel-
eration (here referred as fall) of the slip velocity. The exact evolution
of slip at each point on the fault is extremely difficult to observe
from seismic data (Guatteri & Spudich 2000). At periods that are
relevant to finite-fault models of near-source strong-motion data
(1–50 s), various slip-rate functions, which correspond to different

frictional properties, can be suitable to fit the seismic data, hence
it is challenging to resolve the slip-rate function from seismic data.
Models show that at higher frequencies (>1.5 Hz) there is some
sensitivity to the evolution of slip with time (Guatteri & Spudich
2000), yet these frequencies are difficult to model due to their de-
pendence on the fine details of the structure. In addition, since the
observations are made at the surface while most of the slip occurs
at some depth, what we observe is already a convoluted version of
the actual slip histories of the points on the fault, leading to a lack
of resolution.

The kinematic modellers tend to use either a multiple time win-
dow approach (e.g. Hartzell & Heaton 1983; Sekiguchi & Iwata
2002) where the rupture velocity is constant and one inverts for
the shape of the slip-rate function, or a predetermined functional
shape with one or two variables where rupture velocity is typically
variable (e.g. Hernandez et al. 1999). Although it might seem that
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by using multiple time windows one might obtain the functional
shape of slip-rate function, the problems related to the resolution as
mentioned above still persist and adding more parameters does not
alleviate the problem. Even when the shape of the slip-rate func-
tion is fixed, it is challenging to determine the duration of slip (rise
time). Using the 1992 Landers Earthquake as a case example, Cohee
& Beroza (1994) have shown that one can successfully model the
strong-motion waveforms using either short or long rise times. On
the other hand, Cohee & Beroza (1994) also argue that if the num-
ber of stations is insufficient, multiple time window approach might
lead to problems with estimating rupture velocity, slip distribution
and moment of the earthquake.

In consideration of this lack of resolution, many kinematic mod-
ellers choose to use a predetermined slip-rate function and invert for
the duration of the slip-rate function using one or two parameters
(e.g. Cohee & Beroza 1994; Cotton & Campillo 1995; Bouchon
et al. 2002; Ji et al. 2002; Tinti et al. 2005; Liu et al. 2006). Konca
et al. (2013) have shown that even using only two adjustable param-
eters to characterize the duration of the rise and fall of the slip-rate
function with given functional shapes, one cannot obtain the asym-
metry of the slip-functions. In their study, synthetic earthquakes
are generated by spontaneous dynamic simulations with asymmet-
ric slip-rate functions and ground velocity is calculated at a large
number of station locations. Even in these idealized cases, in which
no noise is added and there is abundant geodetic and near-source
strong-motion data, the inverted slip-rate functions do not resolve
the asymmetry apparent in the input slip-rate functions. Longer fall
durations are statistically as likely as longer rise durations, showing
that with standard kinematic inversions and the conventionally used
frequency range (1–50 s) it is challenging to resolve the functional
shape of the slip-rate function.

Here, we bring a new approach to determine the slip-rate function
from kinematic finite-fault inversions by using the near-field phases
and the following far-field S phases recorded very close to the
fault rupture. First, we highlight the fact that the near-field term of
the displacement is given by the integral of accumulated moment,
which in turn is characterized by amount of slip, rupture velocity
and slip-rate function. We demonstrate that this near-field phase
along with the following S-wave pulse can be utilized to constrain
the slip-rate function and the rupture velocity. Then, we apply this
method to the 2003, Mw6.6 Bam Earthquake, which generated one
of the best records of ground motion near a fault to date. In order to
avoid pre-determining the slip-rate function, we employ a Bayesian
approach and search for family of slip-rate functions and rupture
velocities that explain the strong-motion data recorded very close
to the rupture of 2003 Bam earthquake. Our results indicate that
an average slip-rate function with acceleration duration of 0.4 s and
deceleration duration of 1.4 s, with the functional shape similar to
the prediction of dynamic models explains the transverse record of
the Bam earthquake. The rupture velocity is about 82–90 per cent
of the shear wave velocity, close to the Rayleigh wave speed.

2 T H E O RY A N D M E T H O D S

2.1 Near-field radiation at near-source stations

The displacement due to a point shear offset of moment M0(t) in x1

direction for a fault in x1-x2 plane is given in spherical coordinates
centred on the source by Aki & Richards (2002). Note that the
separation of the near-field and intermediate-field in the formulation
by Aki & Richards (2002) is artificial, since the integration in the

near-field term can be written in terms of the variable ν = r/τ as

u(x, t) = 1

4πρ
AN 1

r 2

α∫

β

M0

(
t − r

υ

) 1

υ3
dτ

+ 1

4πρα2
AN P 1

r 2
M0

(
t − r

α

)
+ 1

4πρβ2
AN S 1

r 2
,

where

AN = 9 sin 2θ cos φr̂ − 6 cos 2θ cos ϕθ̂ + 6 cos θ sin ϕϕ̂

AN P = 4 sin 2θ cos φr̂ − 2 cos 2θ cos ϕθ̂ + 2 cos θ sin ϕϕ̂

AN S = −3 sin 2θ cos φr̂ + 3 cos 2θ cos ϕθ̂ − 3 cos θ sin ϕϕ̂

AF P = sin2θ cos φr̂

AF S = cos2θ cos ϕθ̂ − cosθ sin ϕϕ̂,

where θ is the angle to the observer measured from the x3 axis, ϕ

is the corresponding angle in the x1−x2 plane measured from x1

direction and r̂ is the radial direction. The superscripts N, F stand
for near-field and far-field, respectively.

In the Aki & Richards (2002) formulation, the integral boundaries
of the first near-field term includes a term r which makes the term
look as if it decays 1/r 4. However, when the change of variables
is applied, then it becomes clear that all the near-field terms decay
with 1/r 2 and far-field terms decay with 1/r (Valette 2014).

For a station very close to the fault, as the rupture propagates
from the hypocentre toward the station, the radial direction lies
along the fault line and the transverse direction is the θ̂ direction.
As a result, until the rupture comes very close to the station, the
phases contributing to the transverse θ̂ component motion will be the
near-field and near-field P waves (eq. 1). The far-field P waves only
contribute to the radial component, but since θ ≈ π/2 for a station
very close to the rupture, the radial component does not record
significant far-field P phase. Because the amplitude of the near-
field phases decay rapidly (with 1/r 2, they are well-recorded only
for stations that are very close to the rupture. Moreover, for stations
which are further away from the fault line, the radial component is
not aligned with the rupture propagation direction so the transverse
component also records the far-field P waves, so it becomes harder
to isolate the near-field phases.

For the displacement seismograms, the contribution from the
near-field term is the integral of the moment with time, while the
near-field P and S terms scale with the moment itself and the far-field
term scales with Ṁ0.

For a velocity record, the near-field phase involves a direct sum-
mation of moment from each point on the fault, the near-field P
and S waves scales with Ṁ0, while the far-field phases are related
to M̈0 So the near-field term between the first arrival and S wave
arrival is more sensitive the cumulative effect of the rupture until
the S wave arrival, while the far-field terms are more sensitive to
variations in slip, rupture velocity and slip-rate function. The near-
field term involves a summation of the moment release at each point
on the fault, so it is sensitive to the amount of slip at each point
that contributes in that time window, as well as rupture velocity and
slip-rate function.

On a near-source seismogram, the near-field terms will look like a
ramp function on the transverse component (direction perpendicular
to the fault strike) and are followed by reverse polarity and usually
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much larger S-wave pulses. As one moves away from the hypocentre,
the P–S time difference increases and the near-field phase ramp
becomes a longer ramp function.

The sensitivity of transverse component near-source seismo-
grams to the kinematic parameters is shown for a numerical earth-
quake example in Fig. S1. Fig. S1 shows that the amplitude of the
near-field P phase depends on how fast the moment is accumulated,
so both the rupture velocity and the slip-function contribute to the
near-field P phase waveform and the following transverse S pulse.
Fig. S2 shows the dependence of the near-field phase and the fol-
lowing S wave pulse on the slip amplitude. This test also shows that
the dependence of slip on the far-field waves is linear. On the other
hand, for the near-field phase, a higher slip corresponds to a larger
trend of the ramp function, since it depends on the accumulated
moment as mentioned above.

Below, we demonstrate the dependence of the near-field phase to
the slip-rate function using the data from the 2003 Bam Earthquake.

2.2 The 2003 Bam earthquake

The Mw6.6 2003 Bam Earthquake occurred on a NS trending right-
lateral vertical strike-slip fault near the ancient city of Bam in
southern Iran. The rupture initiated at the south of the city, and
propagated unilaterally toward north, causing major destruction in
the city.

The ground motion was recorded in the destroyed city itself at the
north end of the rupture and about 400 m from the fault. Fig. 1(a)
shows the three-component ground velocity recorded by the BAM
station. The near-field P and SH pulses are clearly seen in the
transverse (E–W) component, while the other two components do
not contain any significant energy as expected from the theory. A
late pulse observed on the vertical component is probably due to a
shallow secondary faulting on a nearby thrust fault (Talebian et al.
2004).

This strong motion record was studied by Bouchon et al. (2006),
who, through forward modelling, inferred a rupture velocity close
to the Rayleigh wave velocity of the upper crust where rupture was
confined.

There are three sets of parameters that characterize the seismic
radiation from the earthquake; the slip distribution, the rupture ar-
rival time at each point which is typically characterized by the
rupture velocity and the time history of slip at each point which
is commonly characterized by a slip-rate function. Slip distribution
was independently determined from InSAR data by Funning et al.
(2005), as shown in Fig. 1(b). The rupture velocity and slip-rate
function are both assumed to be constant along the fault.

We first demonstrate the sensitivity of the near-field P and S wave-
forms to slip-rate function for the Bam earthquake by generating
waveforms using various triangular-shaped source–time functions
with rupture velocity fixed to 92 per cent of the shear wave speed
(Fig. 2). As seen in Fig. 2, the rise and fall durations of the slip-rate
function are critical in determining the transverse component wave-
forms. The sharper slip-rate functions accumulate moment more
rapidly, yielding a higher amplitude near-field P phase. The pulse
width and the peak of the later S-wave pulse also depend on the
rise and fall durations of the slip-rate functions. This forward test
clearly shows that the transverse ground motion contains crucial
information about the slip-rate function.

2.3 The inversion method

In order to determine the shape of the slip-rate function and the
rupture velocity, we go a step further in the analysis. We employ a
Bayesian approach, where the goal is to find the family of slip-rate
functions and the range of rupture velocity that produce waveforms
which fit the observed near-field P waves and the S waves on the
transverse component of the BAM recording. We use the slip distri-
bution obtained from InSAR data by Funning et al. (2005), hence
the only unknowns in the problem are the rupture velocity and
slip-rate function, which are kept constant for all the sub-faults.

First, we generate a random set of slip-functions in certain time
ranges, and a random set of rupture velocities. For each forward
calculation we randomly select a slip-function and a rupture veloc-
ity in the pre-set ranges of parameters. Once the rupture velocity
and the slip-rate function are chosen, with the predetermined slip

Figure 1. (a) The three component waveform data recorded at BAM station. The NF window covers the near-field P portion, and the S window covers the
S-wave portion of the E–W seismogram. (b) Slip model taken from Funning et al. (2005) obtained from InSAR data. Red star is the hypocentre and black
triangle shows the location of the BAM station.
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Figure 2. Data and model prediction of transverse component of velocity at
BAM station, using four different triangular slip-rate functions and a rupture
velocity of 92 per cent of shear wave velocity. Inset shows the triangular
shape of the slip-rate function used for the forward models, where ‘r’ repre-
sents the rise (acceleration duration) and f represents the fall (deceleration
duration) of slip velocity, for example, r1f2 is a triangular function with rise
duration of 1 s and fall duration of 2 s.

distribution we calculate a forward model. We have generated 20 000
such forward models. Then the set of models are resampled by
their fit to the near-field P and S pulse on the transverse component
recording of the BAM station. We ignore the other two components,
since not only they do not record any significant motion but also
are sensitive to the details such as dip slip component of the rupture
and other secondary source details and structural complexities.

2.4 Step 1: Generation of the slip-rate functions and the
rupture velocities

For each forward model, a rupture velocity is randomly chosen
between 74 and 94 per cent of the shear wave velocity. The prior
distribution of randomly generated rupture velocities are shown in
Fig. 4(a).

Slip-rate functions are generated by randomly choosing rise and
fall durations in a given time range (0–1.5 s). The only restriction
on the slip-rate function is that it is forced to increase monotonically
until a peak slip velocity, and decrease monotonically until the slip
stops. This implies a single rupture front.

The construction of the slip-rate function is done in the following
manner: Two random numbers are selected between 0 and 1.5 s
which represent the peak velocity time (the acceleration or rise
duration) and end time minus peak velocity time (deceleration or
fall duration). In order to randomize the shapes of the functions,
10 random points are generated and sorted, which represent the
random time steps that the slip-rate function increases to the peak
velocity. Similarly the decrease from peak velocity to zero velocity
is obtained at 10 random steps. 50 randomly generated slip-rate
functions are shown in Fig. 3(a), and the prior distribution of rise
and fall durations is shown in Figs 4(b) and (c).

2.5 Step 2: Calculation of the waveforms

Using the slip distribution obtained from geodesy, randomly gen-
erated slip-rate function and the rupture velocity as described in

Step 1, we generate synthetic seismograms using the 1-D velocity
structure inferred for the region by Tatar et al. (2005) and as previ-
ously used by Bouchon et al. (2006) (Table 1). The Green’s functions
are computed using the discrete wavenumber method (Bouchon
1981).

2.6 Objective function and resampling

An essential aspect of this study is to emphasize the near-field phase
in the objective (cost) function. This is achieved by a weighted L2

norm of the form

φ = W
NN F∑
i=1

(
di

N F − si
N F

)2 +
NS∑
i=1

(
di

S − si
S

)2
, (2)

where φ is the misfit, W is the weight that is added to the near-field,
di

N F and si
N F are the ith data and synthetic of the near-field phase,

di
S and si

S are the ith data and synthetic of the S phase, respectively.
The near-field and S phase of the transverse component seismogram
are indicated in Fig. 1(a). The weight factor (W) is crucial, since the
standard L2 norm would not be sensitive enough to the near-field
phase, and would be dominated by the larger amplitude S wave.
Here we choose the weight so that

W
NN F∑
i=1

di2
N F ≈

NS∑
i=1

di2
S (3)

yielding a value for the weight W = 8.
Posterior probability density is based on maximum likelihood

principle. In this approach, the probability of a model with a cer-
tain slip-rate function and rupture velocity combination (P) being
selected is related to its misfit (Menke 1989; Tarantola 2005)

P ∼ Ae−φ/(2σ 2), (4)

where φ is the misfit function from eq. (2), σ is the standard devia-
tion of the data uncertainty and A is a normalization constant. Since
the data uncertainty σ is not known, and our error norm is arbitrary
due to the weight added to the near-field portion of the L2 misfit,
we prefer to scale the problem by assuming that σ 2 = φmin where
φmin the minimum error obtained from the 20 000 forward models.
This arbitrary choice of data uncertainty will be further examined
in the discussion section. The normalization A is chosen so that
P = 1 for the model with minimum error. The posterior probability
distribution function P then becomes

P ∼ Ae−φ/(2φmin). (5)

3 R E S U LT S

We generated 20 000 forward models which span the parameter
space of possible slip-rate functions and rupture velocities. By re-
sampling as described before, we obtain a posteriori probability
density function (PDF) of accepted models.

In Figs 3(a) and (b), we show 50 randomly selected slip-rate
functions from the prior and the posterior distribution, respectively.
Fig. 3(c) shows the best-fitting 20 slip-rate functions and Fig. 3(d)
shows their fit to the transverse component of the data. The results
shown in Fig. 3 indicate that the type of slip-rate function that fits the
near-field P and the S wave data is characterized by a sharp acceler-
ation and slower deceleration. The models with slower acceleration
phase do not accumulate the moment fast enough to explain the
near-field phase.
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Figure 3. The results of the Bayesian sampling for σ 2 = ϕmin. (a) 50 randomly selected slip-rate functions from the prior distribution of slip-rate functions. (b)
50 randomly selected slip-rate functions from the posterior distribution of models. (c) 20 best-fitting slip-rate functions. (d) 20 best-fitting waveforms where
black is the data and the fits are shown in colours. (e) The average of the all posterior distribution of slip-rate functions.

Another way to inspect the obtained slip-rate function is to cal-
culate the average of all the accepted models. The obtained average
slip-rate function has acceleration duration of 0.4 s and deceleration
duration of 1.4 s (Fig. 3e).

Table 1. The 1-D upper crustal velocity structure from Tatar et al. (2005)
which is used in this study.

Thickness (km) Vp (km s–1) Vs (km s–1) ρ (g cm–3) Qp Qs

8.0 5.3 3.06 2.5 300 150
4.0 6.17 3.56 2.8 500 250
8.0 6.5 3.8 2.9 800 400

The asymmetry of the slip-rate function and plausible range of
rupture velocity can also be inferred by comparing the distribution
of the prior and posterior distribution of rupture parameters (Fig. 4).
Fig. 4(a) shows the prior and posterior distribution of rupture ve-
locities. The plausible range of rupture velocities is inferred as 82–
90 per cent of the shear wave velocity, which is slightly less than
the Rayleigh wave velocity. The characteristics of the slip-rate func-
tions can be deduced from the posterior distribution of the rise and
fall durations. The rise durations have a clear peak around 0.3–0.5 s,
while the fall durations are harder to constrain with a broad range
of solutions between 0.5 and 1.5 s (Figs 4b and c).

These results clearly reveal that the acceleration phase is faster
than the deceleration phase, so the slip-rate function is asymmetric.
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Figure 4. (a) Prior (left-hand side) and posterior (right) distribution of rupture velocity (b) Prior (left-hand side) and posterior (right-hand side) distribution of
rise (acceleration) duration (c) prior (left-hand side) and posterior (right-hand side) distribution of fall (deceleration) duration.

The fall duration is harder to constrain, since it entails the later part
of the seismogram and the smaller energy release at the very end of
slip at a point does not lead to much radiation.

4 D I S C U S S I O N

4.1 Robustness of the results

One critical issue is to ensure the robustness of our result for
the Bam Earthquake case example. When the Bayesian resam-
pling is performed; we use the minimum misfit rather than the
data covariance in the formulation for the maximum likelihood
solution. In order to test the effect of this arbitrariness, we try
σ 2 = 2ϕmin and σ 2 = 1

2 ϕmin as two end member choices, and per-
form the resampling and obtain the posterior PDF (see Figs S3
and S4).

For σ 2 = 1
2 ϕmin (Fig. S3), PDF becomes sharper, which means

that we select less of the models that do not fit the data. When
σ 2 = 1

2 ϕmin, the a posteriori distribution of rupture parameters
shows that the rupture velocity is 87–91 per cent of the shear wave

velocity, the peak of the rise duration is about 0.3 s and the peak
for the fall duration is 1.2–1.3 s. Hence, if we impose a sharper
peak around the best-fitting model, the rupture velocity is closer to
the Rayleigh wave velocity. The average slip-rate function does not
change significantly.

For σ 2 = 2ϕmin (Fig. S4), PDF becomes broader; therefore, more
of the models that do not fit the data are included in the posterior
PDF. Even in this case there is some constraint on the rupture
velocity and slip-rate function. The rupture velocity is 80–90 per
cent of the shear wave velocity and the peak of the rise duration
is around 0.3–0.4 s. For the fall duration, any duration longer than
0.5 s seems plausible. The average slip-rate functions obtained from
posterior distribution are very similar to the ones obtained for σ 2 =
ϕmin and σ 2 = 1

2 ϕmin.
The acceleration duration can be better constrained due to the

sensitivity of the near-field P phase to how fast the moment is
accumulated. The deceleration duration is harder to constrain, since
it produces the later parts of the seismogram where there is more
trade-off. In addition, the smooth low amplitude ending part of the
slip-rate function releases very small energy and does not add much
to the seismic radiation, making it harder to constrain.
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4.2 Implications for the slip-rate function

The theoretical solution of Kostrov (1964) for a self-similar crack
implies a square-root singularity, followed by a longer deceleration
where the slip-rate function goes to zero only after the crack stops
and sends back healing pulses. For pulse-like ruptures, a similar
truncated function is obtained by Nielsen & Madariaga (2003).

On the other hand, as mentioned before, the slip-rate function
is very hard to retrieve from observations of seismic data (Cohee
& Beroza 1994; Guatteri & Spudich 2000). Recognizing this lack
of resolution, some of the kinematic modelers preselect a slip-rate
function and use one or two parameters to obtain the duration of
the slip-rate function, which is also referred to as ‘the rise time’.
Amongst these commonly used slip-rate functions are two param-
eter cosine function (e.g. Ji et al. 2002; Liu et al. 2006), single
parameter smooth ramp (Cotton & Campillo 1995; Bouchon et al.
2002) or triangular function (Cohee & Beroza 1994).

Although various slip-rate functions are successfully adopted to
fit the near-source waveforms in the typical frequency range (∼2–
0.02 Hz) in conventional finite-fault modelling, these assumed slip-
rate functions imply different earthquake source properties. One dif-
ference is that different slip-rate functions generate significantly dif-
ferent high frequency content (>1 Hz) (Guatteri & Spudich 2000).
The choice of slip-rate function also leads to differences in estima-
tion of dynamic parameters such as Dc (Guatteri & Spudich 2000;
Tinti et al. 2005).

Another important concern is that the slip-rate functions that are
commonly used for source studies have different spectral decays,
which would imply different source scaling relationship. Mena et al.
(2010) compared the spectral decays of various slip-rate functions
adopted by finite-fault modellers and showed that the spectral decay
of the slip-rate function can be 1/ f , 1/ f 2 or even of higher order.
They preferred the slip-rate function of Dreger et al. (2007) which
has 1/f spectral decay. For Haskell type source model (1964; Brune
1970) where the far-field displacement spectral decay is 1/ f 2, the
rise time has to decay as 1/ f , since another 1/ f factor will arise
from the finite propagation of the rupture.

Fig. 5(a) shows the spectral decay of the slip-rate function for
the 2006 Bam Earthquake, which is the average of the 100 best-
fitting slip-rate functions. The spectrum of our best-fitting slip-rate
function is consistent with a 1/ f 2 spectral decay. This implies that
although the slip-rate function that we obtain is asymmetrical as
expected by dynamic simulations, the slip rate is function is broad
around the peak so that the spectral decay is 1/ f 2.

Tinti et al. (2005) have suggested a two- parameter function, re-
ferred to as ‘Regularized Yoffe function’, which is motivated by
dynamic models and is coherent with the scaling between kine-
matic and dynamic parameters obtained from numerical modelling
assuming slip-weakening law and laboratory experiments (Ohnaka
et al. 1987). The proposed regularized Yoffe function, is a trun-
cated Kostrov function which is convolved with a triangle to avoid
singularity at the crack tip.

Here we compare the Bam earthquake slip-rate function with
the regularized Yoffe function proposed by Tinti et al. (2005) and
also with the 2 parameter modified cosine function which is also
commonly used (Ji et al. 2003; Liu et al. 2006). Fig. 5(b) shows
the Kostrov function truncated at 1.3 s and symmetric and asym-
metric triangular functions which we have convolved to obtain the
regularized Yoffe functions. Fig. 5(c) shows the comparison of the
Bam slip-rate function with the regularized Yoffe functions and the
two parameter cosine function. We found that when a symmetrical
triangular function (width of 0.65 s) is convolved with the Kostrov

Figure 5. (a) The spectrum of the average of the 100 best-fitting slip-
rate functions obtained for the 2003 Bam earthquake in comparison with
1/ f , and 1/ f 3 spectral decays. (b) (top) A Yoffe function (blue) and the
symmetric (0.325 s half-width) and asymmetric (green) triangular (0.2 s
rise–0.5 s fall) functions that are used for convolution. (bottom) The slip-
rate function for the Bam earthquake compared with the regularized Yoffe
functions convolved with the symmetric and asymmetric triangles and also
the two parameter cosine function.

function, the similarity between the regularized Yoffe function and
the Bam earthquake slip-rate function is limited. When a narrower
triangular function is used, observed broadness of the slip-rate func-
tion is hard to obtain. When a larger triangle is used for convolution,
the rapid acceleration that is observed becomes hard to retrieve.
Therefore, we add one more parameter and convolve the truncated
Kostrov function with an asymmetric triangle (0.15 s rise and 0.55 s
fall duration) and find a similar functional shape with the observed
average slip-rate function. Fig. 5(c) shows that it is also possible to
approximate the Bam slip-rate function with a two-parameter cosine
function with 0.3 s rise and 1.1 s fall duration.

This test shows that although the asymmetry of the slip-rate
function is clear, which favours solutions that are consistent with
dynamic simulations, one cannot choose between different asym-
metric parametrizations at this point. It would require studies of
more earthquakes with near-source data to come up with family of
solutions of slip-rate functions that fit the observations.
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It is important to note that in this study we obtain an average
slip-rate function for the whole fault rupture. Since there is only
one record, it is not possible to obtain a detailed map of slip-rate
function variation along the rupture. In future cases, where there
might be multiple strong-motion records of earthquakes, using the
techniques described here, it will be possible to obtain the variations
of the slip-rate functions along the fault. When more observations
accumulate, we will have a much better understanding of how to
parametrize the slip-rate function. In addition, the variation of slip-
rate function along the fault will significantly contribute to our
understanding of physics of the rupture.

4.3 Implications for earthquake dynamics

One of the simple models of friction is the slip-weakening law,
which assumes a linear decrease from yield strength to sliding fric-
tion, depending only on the accumulated slip (Ida 1972; Andrews
1976a,b). The characteristic slip, at which the friction coefficient
decreases to the sliding friction, is called the slip-weakening dis-
tance (Dc). Mikumo et al. (2003) have shown that the time of the
peak slip velocity is related to the slip weakening distance espe-
cially away from the edges of the slip areas (Fukuyama et al. 2003).
Therefore, the slip-rate function can be used to infer the slip weak-
ening distance. Assuming an average slip of 2.5 m inside the main
asperity implies a Dc ∼ 85 cm. This is in the same order of mag-
nitude as the one obtained by Mikumo et al. (2003), for the 2000
Mw6.7 Tottori Earthquake (Dc ∼70–90 cm) and 1995 Mw7.2 Kobe
Earthquake (Dc ∼40–90 cm). Peyrat et al. (2001), used 80 cm for
the dynamic simulation of the 1992 Mw7.3 Landers Earthquake.

The total duration of the average rise time is shorter than 2 s,
and most of the slip occurs during the first 0.5 s. Considering an
average rupture velocity of 2.75 km s–1, and fault length of 15 km,
the rupture duration is about 5.5 s. This is longer than the slip-rate
function obtained here implying a pulse-like rupture propagation as
Heaton (1990) has shown for many earthquakes.

4.4 Implications for the objective function

One critical element of kinematic modelling of earthquakes is
choosing the objective (cost) function which determines the er-
ror that is to be minimized. Common practice is to use the L2

norm which is also consistent with Gaussian errors and Euclidean
definition of distance (Hartzell & Heaton 1983). Alternatively the
inversion can be done in frequency domain (Cotton & Campillo
1995) or wavelet domain (Ji et al. 2002), in order to express the
importance of various frequency bands and phase arrivals.

Although the amplitude of the near-field phases is smaller than
the following S waves, they are of great importance due to their
sensitivity to the moment accumulation. When standard L2 norm
objective function is used, the contribution of the misfit to the near-
field phase to the overall misfit is not significant in comparison to
the following much larger amplitude S-wave pulse or later phases
which might occur due to source or structural complexities. In fact,
if we had used a standard L2 norm and all three components of
the seismogram, the later pulse observed due to a secondary thrust
faulting on the vertical component would have contributed more
than the near-field phase on the E–W component (Fig. 1). The
resolution in our analysis comes from adding weight to the near-
field phases, as well as ignoring the later phases which might be
present due to details of the structure or source. We suggest that an
objective function that considers the sensitivity of various phases

and emphasizes the beginning of the seismograms can be more
suitable for inferring kinematic parameters.

4.5 Implications for strong-motion station locations

The near-field phases can only be observed at stations that are
close to the fault rupture, since the amplitude of the near-field
phases decays more rapidly (with 1/r 2) in comparison to the far-
field phases (1/r ). Considering their importance in determining the
source properties, it would be useful to get a sense of how close one
should install the strong-motion seismometers to the fault lines in
order to observe clean near-field phases.

In general, how far the near-field phases can be reliably recorded
depends on the moment accumulation and fault geometry. Here, we
would like to use the Bam example to quantify how close one should
install strong-motion stations to capture these near-field phases for
an event like the 2003 Bam Earthquake. The value we obtain might
be valid for earthquakes similar to the Mw6.6 Bam Earthquake and
larger ones.

We calculated the synthetic transverse seismograms along a pro-
file that passes through the Bam station (Fig. S5). We used the slip
distribution of the Bam earthquake as before, and an asymmetrical
triangular slip-rate function with rise of 0.5 s and fall of 2 s. We
calculated the transverse component seismograms at 0.4, 0.8, 1.2,
1.6, 2, 2.5 and 3 km (Fig. S5b). The transverse seismograms show
that the near-field phase has significant amplitude only up to 2 km
distance from the fault line. After 2 km, the near-field phase is of
significant amplitude, while the following S wave pulse amplitude
does not decrease significantly since it is a far-field phase. Hence
one can infer that for an earthquake of Mw6.6 or larger, stations as
far as 2 km can be used in for studying the near-field phases.

5 C O N C LU S I O N

We obtained an average slip-rate function from kinematic inversion
by using near-field P phase and S phase of the transverse com-
ponent record of the 2003 Mw6.6 Bam Earthquake. Our method
emphasizes the sensitivity of the near-field phase to moment ac-
cumulation, which depends both on slip-rate function and rupture
velocity. We propose that a modified objective function that em-
phasizes near-field phases and the following transverse S waves
will help constrain source parameters more effectively. The aver-
age slip-rate function obtained for the 2003 Bam Earthquake has
acceleration duration of 0.4 s and deceleration duration of 1.4 s.
This rapid accumulation of slip is consistent with dynamic mod-
els which predict a rapid acceleration and slower deceleration. The
short duration of the slip-rate function relative to the rupture du-
ration implies that the Bam Earthquake propagated as a pulse-like
rupture. In future cases where multiple near-source records exist for
an earthquake and slip distribution can be constrained independently
from geodesy, this method can be used to obtain a detailed map of
slip-rate functions and its variations along the fault, which would
contribute significantly to our understanding of rupture dynamics.
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S U P P O RT I N G I N F O R M AT I O N

Additional Supporting Information may be found in the online ver-
sion of this article:

Figure S1. (a) The slip distribution of the synthetically generated
Mw6.9 earthquake used for this test. (b) The location of stations
(green triangles) with respect to the fault (red line), the hypocentre
is shown with a red star. (c) The transverse component velocity
seismograms at stations along the fault using rupture velocities of
2, 2.5 and 3 km s–1 and various triangular slip-rate functions. ‘r’ and
‘f’ represent the rise and fall durations of the triangular functions,
similar to Fig. 2.
Figure S2. (a) The transverse component velocity seismograms
along the fault for 1 m (red), 2 m (black) and 3 m (blue) of slip.
(b) The station distribution and the location of the fault (blue line).
The red star shows the hypocentre location. (c) The slip distribution
used for the calculation. The red sub-faults demonstrate the slipping
area with 1, 2 and 3 m slip, respectively. The rupture velocity is
2.5 km s–1 and rupture time contours are shown every 2 s. The slip-
rate function is a symmetric triangular function with a width of
2 s.
Figure S3. The results of the Bayesian sampling for σ 2 = 1

2 ϕmin.
(a) 50 randomly selected slip-rate functions from the prior dis-
tribution of models. (b) 50 randomly slip-rate functions from the
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posterior distribution of models. (c) 20 best-fitting slip-rate func-
tions. (d) 20 best-fitting waveforms where black is the data and
the fits are shown in colours. (e) Prior (left-hand side) and posterior
(right-hand side) distribution of rupture velocity. (f) Prior (left-hand
side) and posterior (right-hand side) distribution of rise (accelera-
tion) duration. (g) Prior (left-hand side) and posterior (right-hand
side) distribution of fall (deceleration) duration. (h) The average of
the all posterior distribution of slip-rate functions.
Figure S4. The results of the Bayesian sampling for σ 2 = 2ϕmin.
(a) 50 randomly selected slip-rate functions from the prior dis-
tribution of models. (b) 50 randomly slip-rate functions from the
posterior distribution of models. (c) 20 best-fitting slip-rate func-
tions. (d) 20 best-fitting waveforms where black is the data and the
fits are shown in colours. (e) The average of the all posterior distri-
bution of slip-rate functions. (e) Prior (left-hand side) and posterior
(right-hand side) distribution of rupture velocity. (f) Prior (left-hand

side) and posterior (right-hand side) distribution of rise (accelera-
tion) duration. (g) Prior (left-hand side) and posterior (right-hand
side) distribution of fall (deceleration) duration.
Figure S5. (a) Slip distribution and the station distribution,
at which the transverse seismograms are calculated. The profile is
along the actual location of the BAM station shown by the nearest
station (blue triangle). (b) The calculated transverse seismograms
at stations along the profile (http://gji.oxfordjournals.org/lookup/
suppl/doi:10.1093/gji/ggu285/-/DC1).
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