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ABSTRACT

Array observations of the vertical component of microtremors 
are frequently conducted to estimate a subsurface layered-earth 
structure on the assumption that microtremors consist predominantly 
of the fundamental mode Rayleigh waves. As a useful tool in the 
data collection, processing and analysis, the spatial autocorrelation 
(SPAC) method is widely used, which in practice requires a circle 
array consisting of M circumferential stations and one centre station 
(called “M-station circle array”, where M is the number of stations). 
The present paper considers the minimum number of stations 
required for a circle array for efficient data collection in terms of 
analytical efficacy and field effort.

This study first rearranges the theoretical background of the 
SPAC algorithm, in which the SPAC coefficient for a circle array 
with M infinite is solely expressed as the Bessel function, J0(rk) 
(r is the radius and k the wavenumber). Secondly, the SPAC 
coefficient including error terms independent of the microtremor 
energy field for an M-station circle array is analytically derived 
within a constraint for the wave direction across the array, and is 
numerically evaluated in respect of these error terms. The main 
results of the evaluation are: 1) that the 3-station circle array 
when compared with other 4-, 5-, and 9-station arrays is the 
most efficient and favourable for observation of microtremors if 
the SPAC coefficients are used up to a frequency at which the 
coefficient takes the first minimum value, and 2) that the Nyquist 
wavenumber is the most influential factor that determines the 
upper limit of the frequency range up to which the valid SPAC 
coefficient can be estimated.

INTRODUCTION

The desire for an exploration technique applicable to areas 
where conventional seismic methods are difficult or impossible 
to implement, such as urban or environmentally sensitive areas, 
has given rise to development of a method different from 
conventional seismic methods: the “Microtremor Survey Method” 
(MSM), which makes use of microtremors found in abundance 
anywhere on the surface of the earth (Okada, 1998, 2003; Okada 
et al., 1990). Typical examples of the method are the frequency-
wavenumber power spectral method (referred to as the f-k method) 

(e.g., Asten and Henstridge, 1984; Horike, 1985; Matsushima and 
Ohshima, 1989; Matsushima and Okada, 1989, 1990; Miyakoshi 
et al., 1994; Yamanaka et al., 1994; Yamanaka et al., 1999), and 
the spatial autocorrelation method (referred to as SPAC method) 
(e.g., Hidaka, 1985; Hough et al., 1992; Malagnini et al., 1993; 
Matsuoka et al., 1996; Matsuoka and Shiraishi, 2002; Okada, 
2003; Okada and Sakajiri, 1983). In recent years both versions 
of MSM have become of major interest as tools that could yield 
more quantitative information, such as shear-wave-velocity profile 
and thickness of sediments over seismic basement. A fundamental 
property common to both versions is that the microtremor is 
regarded as a stochastic process and its spectrum forms the basis 
of analysis (Okada, 2003). The seismic surface wave is a major 
source of information in the MSM. Because both versions observe 
the vertical component of microtremors, the Rayleigh wave 
becomes the most important of the seismic surface waves.

The f-k method uses the frequency-wavenumber power spectral 
density (f-k spectrum) as the statistical parameter (e.g., Capon, 
1969; Lacoss et al., 1969). Its principle is to detect relatively 
powerful seismic waves among the microtremors. This method 
does not question the nature of waves, that is, whether they are 
dispersive or not. There is no logic in the fundamental theory of f-k 
spectral analysis with which to identify surface waves, or to judge 
the dispersion of the surface waves. In this sense the f-k method is 
not a way to detect surface waves specifically.

The SPAC method is based on theory developed by Aki (1957) 
to comprehend the relationship between the temporal and spatial 
spectra of seismic waves too complicated for a phase-to-phase 
correlation analysis (Aki et al., 1958). This theory has also formed 
the foundation for the SPAC method, which has become the key 
to successful extraction of dispersion characteristics of Rayleigh 
waves from microtremors. Of the MSM techniques, the SPAC 
method seems to be more practical and useful (Apostolidis et al., 
2004; Asten, 2003, 2004; Asten et al., 2004; Chouet et al., 1998; 
Kudo et al., 2002; Matsuoka et al., 1996; Matsuoka and Shiraishi, 
2002; Nguyen et al., 2004; Okada, 2003; Roberts and Asten, 2004, 
2005; Sasatani et al., 2001).

There are few reports of the application of the SPAC method. 
However, it has an advantage over the f-k method in that it requires 
fewer stations and a smaller array than the f-k method to achieve a 
similar result regarding the dispersion characteristics of Rayleigh 
waves (Miyakoshi et al., 1996; Okada et al., 1987). The size of the 
array required for observation of microtremors is very important, 
not only because a large array increases field effort and decreases 
field efficiency, but also because a large array may violate the 
assumption required by the MSM that the layers are sub-parallel 
beneath the array.

A further technique for determining phase velocities of Rayleigh 
waves from microtremors has been developed recently by Cho et 
al. (2004), and this may also be included among the Microtremor 
Survey Methods. In their paper the emphasis lies on the theoretical 
development, and although the application to field data recorded at 
three sites is also presented, it seems to be difficult to appreciate 
the practical merit of their theory.
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In the present study, we will consider the SPAC method. 
Many previous workers using the SPAC method have employed a 
circular array, based on the fundamental theory of Aki (1957), but 
in practice consisting of as few as four stations. One station is at 
the centre of the circle and the other three are on the circumference 
at uniform intervals (a “3-station circle array”) (e.g., Kudo et al., 
2002; Matsuoka et al., 1996; Okada, 2003; Okada et al., 1990). 
Even where seven or ten stations are used, a combined array has 
been made up of two or three circular arrays of different radii with 
a shared centre, each of which consists of three stations arranged 
on the circumference at equal intervals (Kudo et al., 2002; Okada, 
2003; Sasatani et al., 2001). Thus, the fundamental use of a circular 
array that consists of three stations on the circumference seems to 
be generally established in the SPAC method. However, there is 
doubt about whether a circular array consisting of as few as three 
stations on the circumference is sufficient for the application of 
the SPAC method. For simplicity, a circular array consisting of M 
stations on the circumference and one at the centre, M + 1 stations 
in total, will be referred to as “M-station circle array” hereafter.

Yamamoto et al. (1997) performed a field experiment to examine 
how many stations are required on the circumference of a circular 
array for microtremor observations to give satisfactory results for 
phase velocity estimation. In the experiment they examined six 
different circular arrays, consisting of three, four, five, six, seven, 
and eight stations equally spaced on the circumference around 
the centre station, respectively. The size of the circle ranged from 
15 m to 45 m in radius. Using the SPAC method they analysed the 
recorded data, and found that the 3-station circle array provided 
phase velocities in the frequency range from 5 to 15 Hz with an 
error of about 5% relative to those calculated from a known shear-
wave-velocity profile at the experimental site. The other circle 
arrays gave comparable results.

They concluded that there was no significant difference between 
the 3-station circle array and the other circle arrays in practical 
determination of phase velocities with the SPAC algorithm, and 
that the 3-station circle array is more practical for microtremor 
observations because less field effort is required. However, 
they gave no theoretical background to explain why a circular 
array with only three stations on the circumference could give a 
satisfactory result in phase velocity estimation.

Recently, microtremor array studies have been reported using 
a seven-station “hexagonal array” (Asten, 2004; Roberts and 
Asten, 2004) and using an alternative SPAC method, the two-site 
SPAC (2sSPAC) method (Morikawa et al. 2004). The hexagonal 
array has been used because it has the advantage of yielding 
independent estimates of the SPAC coefficient over four radial 
distances simultaneously. The 2sSPAC method has been used as 
a labour- and resource-saving technique in which a simultaneous 
observation at only two stations in a given circle array is repeated 
for three different directions to form an equivalent triangle array 
observation.

In this study we will consider comparative merits and demerits 
of the choice of the number of stations on a circular array and 
their configuration. We first rearrange the theoretical background 
of the SPAC algorithm, so that the logical structure of the theory 
may be easier to understand. Secondly, we discuss a circular 
array consisting of a finite number of stations, and emphasise the 
question of how to evaluate the efficiency of such a circular array.

SPATIAL AUTOCORRELATION COEFFICIENT

For the sake of simplicity of expression, polar coordinates 
(r, θ) are used.

Assumptions

We make the following assumptions about microtremors:

1.  Microtremors consist of seismic plane waves coming from 
direction φ with variables of time t and position vector ξ(r, θ) 
(= r(cosθ, sinθ)), and are regarded as a stationary stochastic 
process both temporally and spatially. Let X(t, ξ) be an 
observed record of the process. For X(t, ξ) there exists a doubly 
orthogonal process ζ(ω, k), so that X(t, ξ) can be expressed in 
a spectral representation as

  
          

(1)

where ω (= 2πf) is the angular frequency, k (= k(cosφ, sinφ)) the 
wavenumber vector, and dζ (ω, k) = ζ(ω + dω, k + dk) - ζ(ω,k) 
(Priestley, 1981).

Because the integral in this equation is defined in the mean-
square sense (Priestley, 1981), the squared amplitude,

, rather than  is important as a key term 

which implicitly characterises the microtremor energy field in 

the following analysis.

2.  The process  has the following property: its increments at 
different values of ω and k are uncorrelated (e.g., Yaglom, 
1962; Capon, 1969; Priestley, 1981), i.e., for any two distinct 
sets of (ω, k) and (ω′, k′), 

i. E[dζ(ω, k)] = 0  for all ω and k,

ii.  E[dζ∗(ω, k)] · dζ(ω′, k′)] = dH(ω, k)δ(ω – ω′)δ(k – k′), 
for any two distinct sets of (ω, k) and (ω′, k′),

where E[·] denotes an average taken over all observed records of 
microtremors, * the complex conjugate, H(ω, k) the integrated 
spectrum of X(t, ξ), and δ(·) the Dirac delta function.

3.  The angular frequency ω and the wavenumber k in equation 
(1) are related as a function of each other, ζ, namely the 
microtremors expressed as a stochastic process, is significant 
only on the curve [ω, k(ω)].

The third assumption inevitably leads to the tacit assumption that

4.  the most powerful of the plane waves in microtremors is the 
surface wave component, and one of the surface wave modes 
(often the fundamental mode) is dominant.

Power spectrum of microtremors

When we discuss the vertical component of microtremors, the 
surface wave referred to is the Rayleigh wave. In this case, the 
spectral representation of equation (1) can be written as

  
(2)

Our main interest lies in the microtremor energy field associated 
with Rayleigh wave propagation, i.e., we are interested in the 

squared amplitude , closely related to the energy of the

process, rather than in . It is difficult to visualise the form 

of the amplitudes of the random variable   as a function 
of frequency and direction, in equation (2). However, the total 
microtremor energy over the time interval (-∞, ∞) is infinite, hence 
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as a conventional technique we describe their spectral properties in 
terms of the distribution of power (i.e., energy per unit time) over 
a continuous range of frequencies or wavenumbers and directions 
in the following discussion.

In general, as spectra of microtremors are considered to be 
continuous and differentiable with respect to frequency and 
direction, the stochastic process ζ(ω,φ) satisfies the following 
relationship

             

                   (3)

for which the property (ii) of the second assumption is referred 
to. In this equation the term h(ω, φ), a spectral density function, 
may be referred to as the “frequency-direction spectrum density” 
(Henstridge, 1979), and h(ω, φ) dω dφ represents the average 
contribution to the total power from waves in X(t, r, θ) coming 
from the directions between φ and φ+ dφ. with angular frequencies 
between ω and ω + dω.

Integrating this average contribution over all directions, we 
obtain the power spectral density function (or simply the “power 
spectrum”) of microtremors h0(ω) at a station:

                           
(4)

The important point to note is that the power spectrum of 
microtremors is not dependent on the directions to microtremor 
sources; that is, the power spectrum of microtremors is not dependent 
on whether the wave field is due to a single source or many.

SPAC function

Now, suppose there are two microtremor stations A and B a 
distance r apart. Let A be at the origin of the coordinate system (0, 
0), and the coordinates of station B are (r, θ). From equation (2), 
the microtremor record at station A can be represented as

 
                  

(5)

and the record at B as
   

 
   

(6)

We define the spatial autocorrelation function S(r, θ), of 
microtremors between A and B, by

 
(7)

                 

where * denotes the complex conjugate. Using equations (3), (5), 
and (6), this equation reduces to

(8)
 
          
where

     (9)       

           

is the spatial covariance function (“SPAC function”) that measures 
the covariance at frequency ω between the microtremors observed 
at stations A(0, 0) and B(r, θ) (Henstridge, 1979).

The SPAC function at the origin (0, 0) of the coordinate system 
is

                           (10)

which is identical to the power spectrum of microtremors h0(ω) 
given by equation (4).

Equation (9) mathematically means that the value of SPAC 
function g(ω, r, θ) depends on the frequency-direction spectrum 
density h(ω, φ) which may vary within a microtremor energy field. 
This makes it necessary to examine whether the data observed in 
a specified period of time have satisfied the temporally stationary 
assumption. For such an examination, the power spectrum should 
be estimated for a number of short time segments into which the 
block of all data observed is divided, before performing a detailed 
analysis of the data, for which the direct segment, or block 
averaging, method (Capon, 1969) should be used.

Morikawa et al. (2004) have recently proposed the two-site 
SPAC (2sSPAC) method as an alternative to the SPAC method. In 
practice, this method depends on the SPAC function of equation 
(9), and implicitly relies on the assumption that the frequency-
direction spectrum density h(ω, φ) is stable throughout the period 
in which a series of observations is performed. If this assumption 
is violated, this method cannot work as an alternative to the SPAC 
method we consider in this paper.

AVSPAC function from averaging SPAC functions

Suppose we lay out an array that consists of an infinite number 
of stations placed on a circle of radius r around the origin A (the 
“theoretical circle array”; an array consisting of a finite number 
of stations placed on a circle is a “practical circle array”). We 
can then define the average spatial covariance function  
(“AVSPAC function”) by averaging g(ω, r, θ) over all directions

                
 

 (11)

Replacing g(ω, r, θ) by the right-hand side in equation (9) and 
interchanging the order of integration, we obtain

 (12)

The integral with respect to the station direction θ, in square 
brackets, is the Bessel function of the first kind of order zero:

             
(13)

Thus the AVSPAC function at frequency ω expressed by 
equation (12) can be written as

(14)

                         
and using equation (4), this equation simplifies to

                                (15)

Okada Efficient array observations of microtremors



Left Running Heading Right Running Heading

76

Spatial autocorrelation coefficient

Now we define the spatial autocorrelation coefficient ρ(ω, r) 
(the “theoretical SPAC coefficient”) at angular frequency ω as the 
AVSPAC function normalised by the power spectrum, that is, 

                (16)

From , (where c(ω) or c(f) is the phase 

velocity), equation (16) is rewritten as

                      (17)

Note that the theoretical SPAC coefficient thus defined is 
independent of factors related to the microtremor energy field such 
as the intensity and directional properties of waves arriving from a 
wide variety of sources in space and time. These factors affect the 
frequency-direction spectrum h(ω, φ).

When the theoretical SPAC coefficient ρ(f, r) is obtained by 
using a theoretical circle array of radius r, equation (17) can be 
solved easily for phase velocities c(f) at specified frequencies. 
Applying an inversion technique, or a forward modelling technique 
to these phase velocities, a subsurface structure can be estimated 
immediately beneath the location of the circle array. The greater 
the radius of the circle array, the deeper the subsurface structure 
that can be estimated by that array.

It should also be added that the theoretical circle array may 
be regarded as an ideal array for data collection because the 
theoretical SPAC coefficient is not affected by spatial aliasing of 
the microtremor data obtained by this array.

Thus we have rearranged the theoretical background to show 
that a circle array can provide the theoretical SPAC coefficient as 
expressed by equations (16) or (17).

In actual observations, however, a practical circle array, which 
consists of a finite number of stations, must be used, and the SPAC 
coefficient estimate will be based on this. In fact, a 3-station circle 
array is frequently used for observations, and the resulting SPAC 
coefficient seems to have been incorrectly considered to be the 
same as the SPAC coefficient given by the theoretical circle array. 
Up to now, the problem of the relationship between the SPAC 
coefficient estimate and the number of stations to be used in the 
practical circle array has not been solved. A clue to the solution 
of the problem will be found in the AVSPAC function determined 
by evaluating the integral with respect to θ in equation (11). For a 
practical circle array, we need to reconsider this integral.

SPAC COEFFICIENT ESTIMATED FROM A PRACTICAL 
CIRCLE ARRAY

A practical circle array to be used for microtremor observations 
is made up of a finite number of stations. To such an array, 
however, the SPAC coefficient defined by equation (16) or (17) 
is not applicable, because the integral with respect to θ in square 
brackets in equation (12) cannot be directly replaced by the Bessel 
function. Fundamentally, we must reconsider the integral of the 
SPAC function, and replace equation (11) or (12) by a finite sum 
which depends on the number of stations in the practical circle 
array.

Let us consider an M-station circle array of radius r for M ≥ 3. 
The problem here is how to express the SPAC coefficient to be 
estimated from such a practical circle array.

We return to the SPAC function given by equation (9), in 
which a function of the integrand, exp{irk cos(θ - φ)}, is the key 
term in question. We can rewrite this term using the Jacobi-Anger 
expansion (e.g., Arfken and Weber, 2001; Watson, 1952) as

 (18)

  

where Jn(rk) is the Bessel function of the first kind of order n.

Using this expansion, we approximate the integral with respect 
to θ in equation (11) or (12) with a finite sum of its integrand up 
to M, the number of stations on the circle. The AVSPAC function 
for the M-station circle array  corresponding to  
in equation (11) or (12) may now be expressed as

(19)

    
where

 

        

and ∆θj is the direction interval between the jth and (j+1)th 
stations.

If M stations are placed on the circumference at equal intervals, 
then ∆θj = ∆θ = 2π/M, and we can write

The real part of the AVSPAC function, Re[ĝ(M; ω, r)] ≡ ĝM  (ω, 
r), being observable, may be written as

(20)

 
or from αj = π/2 - (θj - φ)

 
(21)

 
          

The summation over j, for n and φ given, in equation (21) varies 
depending on the number of stations M and on M being either even 
or odd; for M odd

(22)
          

and for M even

  (23)
       
respectively, where l = 1, 2, 3, … in each equation.
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If we choose the coordinate origin so that θ1 = 0, equation (21) 
becomes

(24)

             

where ν = 1 for M odd, and ν = ½ for M even. The integral in the 
second term represents factors related to the microtremor energy 
field, such as the intensity and directional properties of waves 
arriving from a variety of sources. In these factors the function 
cos(2νlMφ) plays a key role in detecting the direction of arriving 
waves by an M-station circle array.

Using the mean value theorem, the integral in equation (24) 
becomes

(25)

   

where ν = 1 for M odd, and ν = ½ for M even. The function 
cos(2νlMφξ) is bounded as
 

                              
(26)

for all M and in the interval 0 ≤ φξ ≤ 2π . Note that this function, 
representing the coefficient of the Bessel function in the series 
in equation (24), plays a role in reducing the magnitude of the 
corresponding term.

Thus the AVSPAC function in equation (24) may be rewritten 
as

(27) 

          

where ν = 1 for M odd, and ν = ½ for M even.

Now we define the SPAC coefficient   at frequency ω 
depending on the number of stations M as

                              
(28)

which can be expressed corresponding to equation (24) as

        (29)

where ν = 1 for M odd, and ν = ½ for M even.

The SPAC coefficient thus defined can be determined only after 
every direction φξ of plane waves propagating across the array is 
specified. In practice, however, it is almost impossible to specify 
all φξ values, because φξ is a random variable and an algorithm to 
study such source factors has not yet been developed for the SPAC 
method under discussion.

The behaviour of the averaged coherency, which is equivalent 
to the SPAC coefficient defined in equation (29), has been studied 
by Asten (2003) and Asten et al. (2004). For example, Asten (2003) 
studied a numerical model of single pair, triangular, hexagonal 
and square arrays. Plane waves crossing the array with uniform 

amplitudes were restricted to a range of azimuths φ, i.e., φ  = 30°, 
60°, and 90°. The result he provided, on the variation of the real 
and imaginary parts of the averaged coherency due to changes in 
microtremor source factors, is worthy of note. Asten also obtained 
the result that the triangular or hexagonal arrays provide adequate 
azimuthal averaging coherency for application of the SPAC 
method, which may be helpful when devising an efficient circular 
array. For details, see Asten (2003) and Asten et al. (2004).

Asten (2005) further discussed the practically obscure but 
theoretically important role of the imaginary component of the 
coherency in detecting departures from plane-wave stationarity 
due to changes in the wavefield across the array, or local lateral 
variations in geology beneath the array.

Although the microtremor source factors examined in Asten 
(2003) and Asten et al. (2004) may be unrealistic and are restricted 
to a few cases from an infinite number of possibilities, their studies 
certainly make up for our lack of investigation into the influence 
of microtremor source factors. However, we believe that even if 
we pursue questions about microtremor source factors, it will be 
impossible to find an appropriate answer: our present purpose is 
only to consider comparative merits and demerits for the number 
of stations on a circle, and their configuration.

Returning to equation (26), we take an upper limit on the 
function cos(2νlMφξ) as a constraint equation, in which φξ 
represents a “bound variable”. Thus

                                 (30)

where ν = 1 for M odd, and ν = ½ for M even, so that the SPAC 
coefficient to be derived for any M in the following procedure may 
be constrained to one which deviates most from the theoretical 
SPAC coefficient as defined in equation (16). In the absence of 
constraints, the function cos(2νlMφξ) reduces the magnitude of the 
corresponding term in the infinite sum in equation (29), depending 
on the values of M and φξ. For the present purpose, we take the 
equation of constraint (30) to be a reasonable compromise.

Tentatively solving the equation of constraint (30) for the 
bound value φξ , the direction of waves propagating across the M-
station circle array, we obtain

                    (31)

where again ν = 1 for M odd, and ν = ½ for M even. As an 
example, consider a 3-station circle array. Then M = 3 (ν = 1), 
and for l = 1 in this equation we obtain the directions of waves 
predominantly propagated through the array as φξ  = 0, π/3, 2π/3, 
... , 5π/3, for n = 0, 1, 2, ... , 5, respectively. These correspond to 
the directions between station pairs in the 3-station circle array. 
For the present purpose it is not worth while examining other 
solutions more closely.

Using equations (29) and (30) we obtain the SPAC coefficient 
estimated from a practical circle array as

                 (32)

where ν = 1 for M odd, and ν = ½ for M even.

Like the theoretical SPAC coefficient in equation (16) or (17), 
the SPAC coefficient thus obtained is independent not only of the 
direction of microtremors arriving at the array φ, but also of the 
power of the microtremor energy sources.
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An important point to note from equations (29) and (32) is 
that the SPAC coefficient for M = 4m+2 is the same as that for 
M = 2m+1, that is,

 
                        (33)

This may easily be verified by substituting 4m+2 for M and ½ 
for ν in equation (32) or (29). For example, when M = 6, which 
forms a hexagonal array, equation (33) gives  

but this is a natural result because of the spatial stationarity 
assumed for microtremors observed in a given array; that is, 
the SPAC function defined in equation (9) for the microtremors 
observed at the centre of a circular array and a site (r, θ) on a 
circle of radius r must essentially be equal to the SPAC function 
for the microtremors observed at the centre and another site on the 
opposite side of the same circle (r, θ ± π).

The assumption of spatial stationarity also allows us to 
suggest that a circular array may be superseded by a semi-circular 
array (Aki, 1965; Asten et al., 2004; Okada et al., 2003). This 
is because if M in equations (32) or (29) is even, and such that 
M = 4m where m ≥ 2, or M = 4m + 2 where m ≥ 1, then the SPAC 
coefficient expressed by equations (32) or (29) must be equal to 
the SPAC coefficient from the semi-circular array that consists 
of half of the M stations, that is, 2m or 2m + 1 stations on the 
semi-circumference, and one at the centre. Asten et al. (2004) 
show examples of modelled SPAC spectra (referred to as SPAC 
coefficients in this paper) for a semi-circular array.

Asten et al. (2004) describe a situation in which a triangle-based 
array was replaced by a semi-circular array. Following from this 
example, it is proposed that a semi-circular array might be applied 
to a modified “profile line survey”, along a set of parallel straight 
or zigzag lines such as are employed by the conventional seismic 
surveying method. This possibility contrasts with the current use 
of a circular array, which is generally restricted to a “point survey” 
at a specific location.

In equation (32), the second term, an infinite sum of Bessel 
functions, may be regarded as the error in the SPAC coefficient 
arising from the use of an M-station circle array. Using εM(rk) to 
represent this “error term”, the error term may be written as

                      
(34)

where ν = 1 for M odd, and ν = ½ for M even.

We observe that the SPAC coefficient defined by equation 
(32) is conveniently independent of the direction of arrival of 
microtremors at the array because of the use of the constraint 
equation (30). Although the SPAC coefficient depends on the 
behaviour of the Bessel functions for two variables (array radius r 
and wavenumber k), the number of stations plays a very important 
role in determining the integral order of each Bessel function, and 
the sign of coefficients, in the error term. We now consider the 
magnitude of the error term as it is defined here.

EVALUATION OF THE ERROR TERM OF SPAC 
COEFFICIENT

We consider the error term in the SPAC coefficient defined for 
an M-station circle array.

The error term in equation (34) may be considered to have 
two contributions. One contribution consists of terms due to 
the finite number of stations in the practical circle array; the 

second contribution relates to the constraint equation (30), which 
deals with the direction of approach of microtremor waves. The 
measurement error accompanying the estimation of the SPAC 
coefficient must basically be less than the error term defined in 
equation (34). Of these contributions the former is the subject of 
our present interest.

The error term has the property that signs in the summation are 
either always positive, or alternate between positive and negative 
depending on the number of stations. This seems to imply the 
possibility of constructive interference or partial cancellation 
between the terms depending on the chosen value of M and the 
wavenumbers concerned.

Keeping this possibility in mind, we evaluate the error term 
of the SPAC coefficient as a function of the number of stations. 
For this evaluation, neither wavenumber k nor array radius r is 
taken as an individual variable, but the product of array radius 
and wavenumber rk, the argument of the Bessel function, is 
instead taken as an independent variable and is referred to as 
“wavenumber” here.

For this evaluation, let us consider four different circular 
arrays: 3-, 4-, 5-, and 9-station circle arrays. The 3-station circle 
array has frequently been used for observations, and so may be 
considered as a typical circular array and to have the minimum 
number of stations. The 4-station circle array is easier to arrange 
on a given area, and therefore reduces field effort, as Asten (2003) 
has observed. There are few case studies in which 5- and 9-station 
circle arrays have been used, but the 5-station circle array may 
be regarded as an example of a practical circular array with a 
moderate number of stations, and the 9-station circle array as an 
extreme example of a practical circular array. Expanding equation 
(32) with the appropriate substitutions for each array, we find

 
(35a) 

 
(35b) 

 
(35c) 

 
(35d)

The quality of the SPAC coefficient as given in equations 
(35a) to (35d) may be measured by the magnitude of error term, 
together with the extent of the wavenumber range in which 
valid SPAC coefficients can be estimated while minimising this 
error term. If we neglect the possibility of partial interference 
between the Bessel functions concerned in the error term, the 
above equations appear to provide valid SPAC coefficients to be 
expected in a wavenumber range that extends as the number of 
stations increases. For this evaluation, either the absolute value or 
the relative value of the error term at relevant wavenumbers could 
be examined. The relative value of the error term, εM(rk)/J0(rk), is 
however inadequate, because if rk is such that J0(rk) is near an axis 
crossing (highly probable in practice), then the ratio may become 
very large. Hence, we prefer the absolute value of the error term. 
Since the value of  can be obtained from observed data 

within the range  to two decimal places (of which, 
however, the hundredths place is probably uncertain), as a practical 
criterion we use a value of 10-2 as a tolerance on the absolute value 
of εM(rk).

We define the “deviation wavenumber” rkd, as the lowest value 
of rk at which the absolute value of εM(rk) is on the verge of 
exceeding the specified tolerance of 10-2.
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For a 3-station circle array, the error term in equation (35a) is 
shown in Figure 1(b) together with the first three contributions. 
Looking at the behaviour of the error term in the figure, the 
partial cancellation due to the alternating signs of the contributing 
functions does not seem to take place in the range of wavenumbers 
shown, but interference between the first two functions does occur 
around rk = 13. Figure 1(c) shows the SPAC coefficient, including 
the error term, compared with the theoretical SPAC coefficient.

The dominant contribution to the error term is twice the 
Bessel function of order six, 2J6(rk). As shown in Figure 1(c), the 
deviation wavenumber for this contribution is rkd ≈ 2.58, beyond 
which the difference between the SPAC coefficients for the 3-
station circle array and the theoretical SPAC coefficient becomes 
clearly discernible. In the figure, we also note that the deviation 
wavenumber thus obtained is very near the wavenumber rkm ≈ 3.83 
at which the theoretical SPAC coefficient takes its first minimum 
value.

For a 4-station circle array, the error term in equation (35b) is 
shown in Figure 2(b) together with the first three contributions. We 
see the error term becomes large and positive value for 2 < rk < 13, 
which is caused by the term 2J4(rk) dominating in 2 < rk < 7.5, 
and the interference between the first three functions in the error 
term occurring around rk = 12. Figure 2(c) compares the SPAC 
coefficient, including the error term, with the theoretical SPAC 
coefficient. The dominant term 2J4(rk) in the error term results in 
a very low deviation wavenumber, rkd ≈ 1.20; wavenumbers for 
which the SPAC coefficient are expected to be valid are limited to 

an extremely narrow wavenumber range. This allows us to suggest 
that the 4-station circle array is unsuitable for a practical circle 
array.

Figures 3 and 4 show the layouts and error terms for 5- and 9-
station circle arrays, respectively, using equations (35c) and (35d). 
The SPAC coefficients are compared with the theoretical SPAC 
coefficient in Figures 3(c) and 4(c).

The dominant contributions in the error terms are 2J10(rk) for 
a 5-station circle array and 2J18(rk) for a 9-station circle array; 
the deviation wavenumber corresponding to each dominant term 
is rkd ≈ 5.77 and rkd ≈ 12.78, near which the theoretical SPAC 
coefficient reaches its second zero, for the 5-station circle array, 
and the fourth zero, for the 9-station circle array, respectively. As 
is evident from these figures, the wavenumber range over which 
valid SPAC coefficients can be expected extends as the number of 
stations increases.

The deviation wavenumbers for practical circular arrays with 
3 to 10 circumferential stations are summarised in Figure 5. The 
deviation wavenumber in general increases with the number of 
stations, thus extending the wavenumber range for which valid 
SPAC coefficients are available. However, arrays consisting of an 
odd number of stations, for example M = 3 or 5, provide the same 
deviation wavenumber as arrays with twice the number of stations 
(e.g., M = 6 or 10), as expected from equation (33), which implies 
that the latter is less efficient than the former for field work and 
data analysis as well.
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Fig. 1. SPAC coefficient for a 3-station circle array of radius r, and its error term. (a) Array configuration of a 3-station circle array. (b) Error 
term of SPAC coefficient (thick solid line). Dotted lines are the first three error terms, -2J6(rk), 2J12(rk), and -2J18(rk). (c) SPAC coefficient for 
a 3-station circle array (thick solid line) and that for a theoretical circle array (thin solid line). All curves coincide for rk < rkd, where rkd is the 
deviation wavenumber (dashed line).

Fig. 2. SPAC coefficient for a 4-station circle array of radius r, and its error term. (b) Dotted lines are the first three error terms, 2J4(rk), 2J8(rk), 
and 2J4(rk). See Figure 1 for additional details.
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Comparison of the SPAC coefficients obtained from practical 
and theoretical circle arrays shows that the number of stations plays 
a role in setting a limit to the wavenumber (rkd) which determines 
limit up to which the circle array provides valid SPAC coefficients. 
This also shows that increasing the number of stations extends the 
wavenumber range for valid SPAC coefficients. The use of an odd 
number of stations in the circle array is more efficient than the use 
of an even number.

DISCUSSION

The range of validity of SPAC coefficients, as estimated from 
observations made with a practical M-station circle array, has been 
evaluated by the criterion of the deviation wavenumber. After a 
numerical examination for 3-, 4-, 5-, and 9-station circle arrays, 
it seems reasonable to propose that the 3-station circle array is 
the most efficient among those, if the SPAC coefficient is to be 
evaluated up to the wavenumber, or equivalently the frequency, 
around which the coefficient takes its first minimum value. With 
our evaluation, we must further refer to the discussion of errors 
in SPAC coefficients by Henstridge (1979) and Matsuoka et al. 
(1996).

Error of SPAC coefficient for an M-station circle array

Referring to estimates of the averaged complex coherence from 
observations made with a circular array, Henstridge (1979) stated 
that the wavenumber rk to be used for analysis must lie in the range 
from 0.4 to 3.2, or alternatively the wavelengths must lie between 
2r and 15r (r is the radius of the array), because the errors in J0(rk) 

are greatly magnified outside this range. His statement is based on 
the evaluation of the variance of an estimated wavenumber  
at angular frequency ω. If an estimate  of the averaged 
coherence is very close to its maximum or minimum, the estimate  

 for the  will have large variance, which in turn 
introduces a large error into the corresponding phase velocities.

On the other hand, Matsuoka et al. (1996) discussed small 
perturbations of the averaged coherence  obtained by 
a circular array, which affects the estimated wavenumber  
and therefore provides a small change in phase velocity. A key 
equation they discussed is

                                 (36)

where  is the wavenumber (c is the phase velocity). 
This equation can be derived from equation (16), where the SPAC 
coefficient is defined for a theoretical circle array.

We also will consider the case where a small change in phase 
velocity δc is due to the error δρM in the SPAC coefficient resulting 
from the M-station circle array employed. The key equation 
corresponding to equation (36) may be written as

(37) 
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Fig. 3. SPAC coefficient for a 5-station circle array of radius r, and its error term. (b) Dotted lines are the first three error terms, -2J10(rk), 2J20(rk), 
and -2J30(rk). The third term (-2J30(rk)) is insignificant for rk < 20. See Figure 1 for additional details.
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Fig. 4. SPAC coefficient for a 9-station circle array of radius r, and its error term. (b) Dotted lines are the first three error terms, -2J18(rk), 2J36(rk), 
and -2J54(rk). See Figure 1 for additional details.
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where x = rk, the wavenumber. For convenience, let us call the 

function  in this equation the “influence function” and 

denote it by |∆(x)|, which may be written, using equations (32) 

and (34), as

 
(38)

                  

where

                (39)

where ν = 1 for M odd, and ν = ½ for M even.

Equation (38) corresponds to equation (36) derived for the 
theoretical circle array.

Figure 6 shows the influence function |∆(x)| calculated 
for practical circle arrays (each lower diagram), to which the 
practical and theoretical SPAC coefficients, shown in Figures 1 
to 4, are also attached for comparison (each upper diagram). The 
deviation wavenumber rkd for each practical circle array and the 
wavelength range, 15r > λ > 2r, corresponding to wavenumber 
range, 0.4 < rk < 3.2, assigned by Henstridge (1979) are 
also shown in the figure.

From Figure 6 we can read the solution to the 
question of how to assign the upper limit of the 
wavenumber range up to which the SPAC coefficient 
can be estimated with the minimum effect of the error 
term and influence function. The solution, depending 
on the number of stations in the array, is that the 
upper limit of the wavenumber range for 3- and 4-
station circle arrays is the deviation wavenumber rkd, 
beyond which the error term in the SPAC coefficient 
becomes dominant, while the upper limit for 
5- and 9-station circle arrays is the wavenumber rk = 3.2 
(equivalent to λ = 2r) assigned by Henstridge, beyond 
which the influence function is greatly magnified.

We are now able to see that what is important in 
estimating the SPAC coefficient to be used for analysis 

is either the deviation wavenumber, or the wavenumber range 
assigned by Henstridge (1979), both of which are dependent upon 
the number of stations.

As a result, we understand that all the upper limits of the 
wavenumber range thus assigned for various circle arrays do not 
exceed the wavenumber at which the SPAC coefficient takes its 
first minimum value. Up to this wavenumber the behaviour of 
the error due to a finite number of stations in the practical array 
is much the same as that due to infinite number of stations in the 
theoretical array, because the term J1(rk), as in the key equation 
(36), has the most noticeable effect on the behaviour of the 
influence function in equation (38).

We conclude that the 3-station circle array should be used 
as a very efficient practical circle array for the SPAC method, 
from which the SPAC coefficients can be estimated safely up to a 
frequency in the vicinity of the first minimum value of the SPAC 
coefficient. Increasing the number of stations to more than three on 
the circumference of a circular array increases field effort but may 
not always improve the analytical efficiency.

We should also consider the statistical consequences of using 
different numbers of stations. Increasing the number of stations 
can be expected to give a statistically better estimate of the SPAC 
coefficient in the specific wavenumber range. This is because 
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Fig. 5. Relationship between deviation wavenumer rkd 
and the number of stations M on the circle of radius r, 
for practical circle arrays.

Fig. 6. The influence function |∆(x)| in the error of SPAC coefficient due to the use of 
practical circle array of radius r (respective lower figures) and the SPAC coefficients 
(respective upper figures) for the four arrays shown in Figures (1)–(4). rkd is the 
deviation wavenumber and rkN the Nyquist wavenumber. The range indicated by arrows 
corresponds to the wavelength λ assigned by Henstridge (1979), outside which the error 
is greatly magnified. For wave components in the shaded area, aliasing occurs. Note that 
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if a value of the SPAC function (equation (32)), estimated 
from observed data, is assumed to be sampled from a normally 
distribution of values, then increasing the number of stations can 
provide statistically smaller variance of the SPAC function, which 
in turn provides a better estimate of the SPAC coefficient in the 
specific wavenumber range. For example, the SPAC coefficient 
estimated from a 6-station circle array (Asten, 2003; Asten, 2004; 
Roberts and Asten, 2004) must essentially be the same as that from 
a 3-station array, as shown by equation (33), but the variance of 
the coefficient estimated from the 6-station circle array would be 
expected to be smaller than that from the 3-station circle array. 
The maximum wavenumber for each array is limited to that 
wavenumber where the coefficient takes its first minimum value.

Spatial aliasing for an M-station circle array

When evaluating the SPAC coefficient to be estimated from 
an M-station circle array, spatial sampling should be examined as 
well. For sampling a continuous spatial data series as in our case, 
we need some sort of criterion to choose the spatial sampling 
interval ∆l between any two points within the circle array. Incorrect 
sampling leads to some loss of information and this loss gets worse 
as ∆l increases. However, making ∆l very small increases field 
effort and decreases analytical efficacy. Hence, a compromise 
spatial sampling interval must be sought (e.g., Chatfield, 1989; 
Sheriff and Geldart, 1983).

Spatial sampling of data by the circle array may cause 
directional aliasing (Henstridge, 1979; Cho et al., 2004), or spatial 
aliasing in the estimation of the SPAC coefficient, but in practice, 
the effect of aliasing has rarely been discussed in the SPAC 
method. In our case we do not consider the effect of directional 
aliasing, because the SPAC coefficient that we estimate using 
an equally spaced M-station circle array is independent of the 
direction of arrival of microtremor energy because of the use of 
the equation of constraint (30). However, spatial aliasing must be 
considered. The discussion is limited to a simple case, because our 
main purpose is to consider comparative merits and demerits for 
the number of stations on a circle array.

Spatial sampling for the circle array is done at the shortest 
interval ∆l between any two stations arbitrarily chosen from the 
array (Figure 7). This allows us to define the Nyquist wavenumber 
kN as
 
                                    (40)
which gives the maximum wavenumber per two sample intervals. 
When we have a wave component with a wavenumber k as k > kN, 

aliasing occurs.

Since the sample interval ∆l for an M-station circle array is 
given as

(41)
                      
the Nyquist wavenumber rkN is

                   
 

 (42)

and the corresponding Nyquist frequency fN is

     
           

(43)

In Figure 6 the Nyquist wavenumber rkN for each practical circle 
array is indicated, and the shaded areas indicate wavenumbers 
which would be aliased.

As is evident from equation (43), the Nyquist frequency fN 
cannot be determined before the phase velocity c is determined 
at this frequency. This means that the Nyquist frequency and its 
corresponding phase velocity are essentially interdependent.

In practice it may be possible to estimate an “effective” Nyquist 
frequency in an iterative way using the following two steps: 1) 
SPAC coefficients over some frequency range are tentatively 
transformed to a phase velocity dispersion curve, assuming that 
wavenumber components may be spatially aliased at the Nyquist 
wavenumber. The phase velocity thus determined at a frequency 
at which the value of SPAC coefficient is almost equal to J0(rkN) 
(for example, J0(π) = -0.3042··· for an M-station circle array with 
M ≤ 6 from equation (42)) gives an effective Nyquist frequency fN′ 
by equation (43). A more desirable temporal sampling rate ∆t′ can 
now be determined from ∆t′ = 1/2fN′; that is, fN′ is a useful estimate 
for alias filtering. 2) Resampling at time interval ∆t′ is done to 
reduce aliasing errors, and the SPAC coefficients are recalculated.

The Nyquist wavenumber rkN for a 3-station circle array is π, 
from equation (42), and in Figure 6(a) we see that this is very close 
to but a little greater than the deviation wavenumber rkd ( = 2.58). 
This shows that the valid SPAC coefficient can safely be estimated 
up to the deviation wavenumber near which the theoretical SPAC 
coefficient takes its first minimum value.

Similarly, the Nyquist wavenumber for a 5-station circle array 
is also π, and that for a 9-station circle array, π/2sin(π/9) (≈ 4.59) 
from equation (42). In Figures 6(c) and 6(d) we see that the 
Nyquist wavenumber is fairly small compared with the deviation 
wavenumber for each array. This suggests that increasing the 
number of stations to 9 at most is not effective in extending the 
wavenumber range within which valid SPAC coefficients can 
be estimated. For example, the greatest wavenumber for which 
valid SPAC coefficients are available for a 9-station circle array is 
limited to rkN ≈ 4.59, which is fractionally greater than rkm ≈ 3.83 
at which the SPAC coefficient takes its first minimum value, but 
there is the disadvantage that the error in the SPAC coefficient in 
the wavenumber range rkm < rk < rkN may be greatly magnified, 
as is clearly seen in the lower part of Figure 6(d). Even for the 
9-station circle array the upper limit of the wavenumber range in 
which the valid SPAC coefficient can be safely estimated is, at 
most, the wavenumber where the SPAC coefficient takes its first 
minimum value, which is not much different from the upper limit 
for the 3-station circle array.
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circle array, 
∆l = 2r sin(θ/
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M), for an M-
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array (M ≥ 6).
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To sum up this discussion, we can safely state that the Nyquist 
wavenumber plays the most important role in selecting an efficient 
practical circle array. In order to obtain the SPAC coefficients 
over a much wider wavenumber range, a combined array that is 
made up of many circular arrays with different radii should be 
used at a survey site. A 3-station circle array, which consists of the 
minimum number of circumferential stations, should be employed 
as the fundamental circular array. We conclude that the 3-station 
circle array is the most efficient practical circle array for the SPAC 
method.

CONCLUSIONS

We have developed a theory of efficient array observations of 
microtremors, with special reference to the spatial auto-correlation 
(SPAC) method. The method is used as a practical and useful 
tool that yields information on subsurface structure, using the 
following assumption: the vertical component of microtremors 
consists of surface (Rayleigh) waves, in which one mode (often 
the fundamental mode) is dominant. In the method one of the 
most important quantities to be derived from observed data is the 
SPAC coefficient. Rearranging the theoretical background of the 
method from an approach to the theory of stochastic processes, 
we find the theoretical SPAC coefficient to be equal to the Bessel 
function of the first kind J0(rk), but subject to the condition that 
observations were made with a continuous array of detectors on a 
circle of radius r.

We have derived an equation for the SPAC coefficient applicable 
to data obtained by a circular array consisting of a finite number of 
stations, in which M stations (M ≥ 3) are placed at equal intervals 
on the circumference of a circle of radius r, with one further 
station at the centre of the circle (an M-station circle array). Using 
a constraint for the direction of waves propagating across the array 
(equation (30)), the equation could be expressed as the sum of two 
terms; the first term is the Bessel function J0(rk), which is the same 
as the SPAC coefficient derived for the theoretical circle array; the 
second term is expressed as a series of Bessel functions, which 
depend on the number of stations M in the circle array concerned.

The SPAC coefficient thus derived was numerically evaluated for 
four different arrays assumed: 3-, 4-, 5-, and 9-station circle arrays. 
For the evaluation, the deviation wavenumber was temporarily 
defined as the wavenumber beyond which the coefficient deviates 
from the theoretical one as wavenumber increases. The numerical 
examination showed that the deviation wavenumber increases as 
the number of stations increases, thus extending the wavenumber 
range over which the valid SPAC coefficient can be estimated.

Aliasing, an inherent property of circular arrays, has also been 
examined; the spatial sampling with an M-station circle array 
determines the Nyquist wavenumber for the array, which specifies 
the maximum wavenumber in the SPAC processing beyond which 
aliasing occurs. We found that the Nyquist wavenumber was 
almost equal to the deviation wavenumber for the 3-station circle 
array, and was fairly small in comparison with the respective 
deviation wavenumbers for both 5- and 9-station circle arrays, 
which suggests that increasing the number of stations on the circle 
to 9 is not very effective in extending the wavenumber range.

The evaluation gave the following results: 1) the Nyquist 
wavenumber due to spatial sampling for an M-station circle array 
is the most influential factor that definitely determines the upper 
limit of the frequency range over which a valid SPAC coefficient 
can be estimated; and 2) the 3-station circle array is the most 
favourable of those considered for efficient array observation of 
microtremors using the SPAC method, but with the condition 

that only the SPAC coefficients up to a frequency near which the 
coefficient takes its first minimum value should be employed.
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